

TURBINE INLET COOLING ASSOCIATION turbineinletcooling.org

CPC 504 – Las Vegas December 7, 2009

Hybrid and LNG Systems for Turbine Inlet Cooling

Dharam (Don) Punwani Avalon Consulting, Inc. Naperville, IL

Hybrid and LNG TIC Systems

Presentation Outline

- System Descriptions & Characteristics
- Examples with Psychrometrics
- Benefits
- Limitations & Disadvantages
- Project Examples

Characteristics

- Incorporate combinations of two or more technologies
- Allow simultaneous use of at least two technologies in sequential processing
- May offer the flexibility of using each technology individually

Pseudo-Hybrid TIC Systems

Characteristics

- Incorporate combinations of two or more technologies
- But permit the flexibility of using only one technology at a time (Do not do allow simultaneous use of both technologies in sequential processing as in the hybrid systems)

Examples

- Chillers + Direct Evap (Fogging/Wetted Media)
- Chillers + Wet Compression
- Indirect Evap + Direct Evap
- Indirect Evap + Chiller
- Indirect Evap + Chiller + Direct Evap
- Absorption Chillers + Electric Chillers

Psychrometrics

Reference: L. A. Schlom and M. V. Bastianen, Energy-Tech, June 2009

Pseudo-Hybrid TIC Systems

Example

Direct Evap Cooling or Direct
Contact Cooling with Chilled water

Benefits

• Maximize the net CT output by minimizing parasitic loads

- For example: When evap cooling alone can provide the desired power output, chiller parasitic load is reduced compared to a system only incorporating chillers

May* reduce the capital cost compared options

- For example: Evap cooling first can reduce the chiller capacity need that in turn reduces the installed cost a chiller system compared to a system using only chillers

* Not always

Limitations & Disadvantages

- Generally attractive in dry weather conditions
- Inlet pressure drop may be higher than that for a single technology option

Example

Las Vegas Cogeneration Facility

Power System

- Four LM6000s (41 MW each)
- Two in cogen and two in combined-cycle

TIC System:

- Fogging followed by chillers to cool inlet air to 50°F
- Only fogging when ambient <70°F
- Chiller (absorption) alone when humidity is high

Example

A Food Processing Company, Bakersfield, CA (2007)

Power System

- One Allison 501 (5 MW) in Combined-Cycle Mode

TIC System

- Indirect evap followed by direct evap
- Replaced an existing direct evap system

Example

Sonoco (A Packaging Company)

Brantford, Ontario, Canada (2006)

Power System

- One Allison 501 (5 MW) in Combined-Cycle Mode

TIC System

- Indirect evap followed by a 150-ton electric chiller

Hybrid Systems

Example

Calpine Clear Lake Cogeneration, Pasadena, TX (1999*)

Power System

- Three W501D (106 MW each)

Hybrid System

- Absorption chillers followed by mechanical chillers
- Absorption chillers (8,300 tons operating on hot water heated by HRSG exhaust) produce chilled water at 41°F and mechanical chillers (1,200 tons) operating in series further reduce the chilled water temperature to 38°F for storage in a 107,000 Ton-hrs TES tank
- •The plant was originally was constructed in 1982 with fogging; Chiller system was retrofitted in 1999

Pseudo-Hybrid TIC Systems Example

Channel Island Power Station, Darwin, Australia (1995)

Power System

- Five GE Frame 6 (42.1 MW each): Two in combined-cycle and Three in simple-cycle configurations

Pseudo Hybrid System

 Allows either direct-evaporative cooling or direct-contact cooling using chilled water from mechanical chillers

LNG Systems

Background

- Many countries (including U.S.) import LNG (Liquefied Natural Gas)
- LNG arrives at the terminals at -259°F
- LNG must be vaporized before it can be used as a fuel at the terminal or transported to other locations by pipeline
- Traditional Heat supply options for vaporizing LNG:
 - 1. Burn natural gas (~2% of the energy in LNG)
 - 2. Heat exchange with air at ambient temperature
 - 3. Heat exchange with ambient temperature water

LNG-TIC Systems

Characteristics

- LNG is used to chill an anti-freeze solution, such as ethylene glycol and water
- Chilled anti-freeze solution is used to cool the inlet air

CPC 504 – Las Vegas December 7, 2009

LNG-TIC Systems

Benefits

- The power plant receives "free" source for cooling the inlet air
- LNG plant receives "free" source of heat for vaporization of LNG

CPC 504 – Las Vegas December 7, 2009

LNG-TIC Systems

Limitation

 Power plant has to be located near an LNG vaporization facility, which is generally located at or near an LNG import terminal

CPC 504 – Las Vegas December 7, 2009

LNG-TIC Systems

Example

Guayanilla Bay, Puerto Rico (2000)

- 507 MW Combined-Cycle Plant
- 24 BCF/Yr. LNG Vaporization Facility*
- Anti-freeze Solution: Ethylene Glycol-Water

* Only a fraction of the vaporized LNG is used by the Power plant at this location; Most of it is injected in pipeline for distribution to other locations.

LNG-TIC Systems Example

Sparrows Point, Dominican Republic (2003)

- 319 MW Combined-Cycle Plant
- 97 BCF/Yr. LNG Vaporization Facility*
- Anti-freeze Solution: Ethylene Glycol-Water

^{*} Only a fraction of the vaporized LNG is used by the Power plant at this location; Most of it is injected in pipeline for distribution to other locations.

Hybrid & LNG-TIC Systems

Contact Information

Dharam (Don) Punwani President Avalon Consulting, Inc. Email: dpunwani@avalonconsulting.com Phone: 630.983.0883

